Unique Continuation for Stochastic Parabolic Equations

نویسنده

  • Xu Zhang
چکیده

This paper is devoted to a study of the unique continuation property for stochastic parabolic equations. Due to the adapted nature of solutions in the stochastic situation, classical approaches to treat the the unique continuation problem for deterministic equations do not work. Our method is based on a suitable partial Holmgren coordinate transform and a stochastic version of Carleman-type estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique Continuation and Complexity of Solutions to Parabolic Partial Differential Equations with Gevrey Coefficients

In this paper, we provide a quantitative estimate of unique continuation (doubling property) for higher-order parabolic partial differential equations with non-analytic Gevrey coefficients. Also, a new upper bound is given on the number of zeros for the solutions with a polynomial dependence on the coefficients.

متن کامل

Quantitative Estimates of Unique Continuation for Parabolic Equations and Inverse Initial-boundary Value Problems with Unknown Boundaries

In this paper we obtain quantitative estimates of strong unique continuation for solutions to parabolic equations. We apply these results to prove stability estimates of logarithmic type for an inverse problem consisting in the determination of unknown portions of the boundary of a domain Ω in Rn, from the knowledge of overdetermined boundary data for parabolic boundary value problems.

متن کامل

Unique continuation and approximate controllability for a degenerate parabolic equation

This paper studies unique continuation for weakly degenerate parabolic equations in one space dimension. A new Carleman estimate of local type is obtained to deduce that all solutions that vanish on the degeneracy set, together with their conormal derivative, are identically equal to zero. An approximate controllability result for weakly degenerate parabolic equations under Dirichlet boundary c...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Carleman Estimates and Unique Continuation for Second Order Parabolic Equations with Nonsmooth Coefficients

In this work we obtain strong unique continuation results for variable coefficient second order parabolic equations. The coefficients in the principal part are assumed to satisfy a Lipschitz condition in x and a Hölder C 1 3 condition in time. The coefficients in the lower order terms, i.e. the potential and the gradient potential, are allowed to be unbounded and required only to satisfy mixed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006